
1 Methods: Common metrics for ESUs

Multivariate dynamic linear modeling (DLM) was used to estimate population
specific mean trends in each ESU from the log of total spawner counts. The
result is an estimate of the mean or smoothed total spawner counts, from which
summary statistics regarding trends were computed. In addition, a univariate
DLM was applied to the logit of the fraction wild estimate to produce a smoothed
fraction wild time series. This was used to produce an estimate of the mean
wild spawners (for years when fraction wild estimates were available).

The mean or smoothed total spawner count is similar (in concept) to a
3- or 5-year geometric mean; the goal is the same—to produce an estimate
that smooths over single year variation. The multivariate DLM approach has
a number of advantages. Most importantly it is a statistical model for which
maximum-likelihood diagnostics, model selection criteria, and confidence inter-
vals are available. It is a time-series model, which addresses temporal autocor-
relation in the data. It deals with missing data and provides an estimate for
the missing year with appropriately wider confidence intervals. And lastly, it
allows us to use information across all populations within an ESU to estimate
the level of year-to-year trend variation—the process variance—and allows us
to estimate the covariance, which is often high, across populations. The latter
improves estimation of missing values because populations with data in one year
help inform the values for populations with missing data that year.

1.1 Dyanmic linear modeling for time-varying trend esti-
mation

Dynamic linear models (DLMs) are similar to linear regression models with a
yearly trend. Like a classic trend analysis using linear regression, the goal is to
estimate the mean spawner count at x, where x is year (time). Linear regression
models, however, use a time-constant yearly trend while DLMs allow the trend
to be time-varying.

A classic linear regression of log spawners (y) against year treats the trend
(β) or yearly growth in the mean spawner count as a constant and fits the
following model:

ȳt = ȳt−1 + β

yt = ȳt + vt
(1)

where yt are the observations, ȳt is the mean of yt and vt are normal-distributed
errors. The mean spawner count in year t is the mean spawner count in year
t − 1 plus the constant trend value β. Normally we write this model in classic
linear regression form as

yt = α + βt + vt (2)

with ȳt = α + βt. A DLM, in constrast, allows us to fit a model with a time-
varying β. Specifically, the following model

ȳt = ȳt−1 + βt = ȳt−1 + u + wt

yt = ȳt + vt
(3)
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The time-varying β, βt , is modeled as u + wt , where u is the mean of βt across
all t and wt is a normally distributed random variable.

Figure 1 shows some example spawner data where a time-varying sinusoidal β

(yearly growth rate) was used to generate counts (the circles) using ȳt = ȳt−1 +βt
and yt = ȳt + vt . This model can also be written yt = α + ∑

t
1 βt + et . The black

line in the top panel of Figure 1 shows the true mean y. The red line shows the
estimate from a linear regression of y against year with a non-time-varying β.
The blue shows the estimate from a DLM where the β is allowed to vary in time.
The bottom panel shows the estimate of β compared to the true sinusoidal β

that generated the data. This illustrates the power of DLM when the objective
is to estimate a time-varying trend.

1.2 Multivariate DLMs for analysis of multiple time series
from one ESU

A multivariate DLM allows one to estimate time-varying trends using a set
of observed time series, in our case populations within ESU, where parameter
sharing is allowed across the time series. Specifically, one can constrain the
variances to be the same across time series and to allow covariance across time
series. The latter allows information from time series with data in year t to help
inform the estimate mean y for time series that have no data in year t.
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ȳ1
ȳ2
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The u j are the mean of β j,t , so the average long-term trend and the trend at
year t is β j,t = u j + w j,t . The wt and vt are error terms drawn from a multivari-
ate normal distribution with variance-covariance matrix Q and R respectively.
The structure of Q and R allows one to specify different types of parameter
constraints (for example equal variances).

1.3 Model selection

Model selection was used to select the structure of Q and R. The following
structures were explored for Q: diagonal with unequal variances (no covari-
ance), diagonal with equal variances, one variance and one covariance across
all populations, equal variances and covariances across similar runtimings in a
population, and unconstrained (unique variances and covariances across all pop-
ulations). For R the following structures were explored: diagonal with unequal
variances (no covariance) and diagonal with equal variances. The R represents
the residual variance, non-time-dependent error and was assumed not to covary
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Figure 1: This figure compares a trend analysis using a non-time-varying trend (red)
via linear regression versus a trend analysis using a time-varying trend(blue). the black
line is the true value and the dots in the top panel are the observations of the black
line in the top panel.
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across populations (Q and R cannot both have covariance terms in the DLM
due to identifiability constraints). Across the majority of ESUs, model selection
gave the most data support (quantified with AICc) to a Q with one variance
and one covariance across all populations in an ESU and a R with one residual
variance across populations.

1.4 Code to fit a multivariate DLM

The MARSS R package was used to fit multivariate DLMs to the log-spawner
counts (or indices in some cases). The package handles missing data entered as
NAs for missing years. The shows example code for fitting 2 time-series via a
multivariate DLM using the MARSS R package.

library(MARSS)

logspawners = log(matrix(

c(

1106, 1503, 853, 566, 251, 424, 783, 639, 566, 413, 1035, 890,

7348, 6880, 2699, 1096, NA, NA, NA, 1318, 1127, 472, 637, 869

), 2,12, byrow=TRUE))

model=list(

Q="equalvarcov",

R="diagonal and equal",

U="unequal")

fit=MARSS(logspawners, model=model)

2 Wild spawner estimates

For some populations, there were fraction wild estimates. However, for many
populations, these data were noisy and had many missing years. In addition,
the number of years with fraction wild information was often shorter than the
years with total spawner counts. To estimate a mean wild spawner estimate,
similar to the mean total spawner estimate, the mean total spawner estimate
was multiplied a smoothed estimate of the fraction wild. The smoothed estimate
was produced by fitting a univariate DLM to the logit zt = log( f/(1− f )) of the
fraction wild estimates. with a time-varying β. Specifically, the following model

z̄t = z̄t−1 + βz + wt

zt = z̄t + vt
(5)

The mean wild spawner estimate at time t was then ȳt exp(z̄t)/(exp(z̄t) + 1).
Each fraction natural origin time series from an ESU was fit independently (no
covariance assumed across populations).
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Figure 2: The estimated mean logspawners using a multivariate DLM. Notice that
the information from the early years when data are available for time-series 1 are
used to inform the estimate for time-series 2. In the ESU reports, these estimates are
not shown. Instead, the reported estimates are started at the first data point for a
population and stopped at the last data point for that population.

5



3 Summary statistics

The following summary statistics were reported for the mean total spawner
estimates, the mean wild spawner estimates, and the raw total and wild spawner
estimates.

15 year trends A linear regression was fit to 15 years of the mean wild spawner
estimate and the slope (trend) reported.

5 year geometric means 5-year geometric means were computed from the
mean wild and total spawner estimates and the raw total and wild spawner
estimates. Note, the mean estimates have no missing values. The raw
estimates may have missing values. When there were missing values, the
geometric mean was computed from only from the non-missing values. For
example, if 3 values were available, (y1y2y3)(1/3) was reported.

average fraction wild These were computed from the raw fraction wild esti-
mates.

productivity metric Because age of return data was not consitent nor avail-
able across ESUs and populations, a generic productivity metric was com-
puted as the mean wild spawner estimate at year t divided by the mean
total spawner estimate at year t−3 for Coho and t−4 for all other species.
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